

5

PROJECT 18NRM02 PRISM-eBT - WP4 STATUS REPORT -14/12/2021

UistWP 4 - 3D DOSE DISTRIBUTION MEASUREMENTS AND
COMPARISON WITH MANUFACTURER-SUPPLIED DOSE MAPS

Task 4.1 – Measurement of the 3D dose distributions close to the considered eBT devices with or without applicators fitted

A3.3.1-3.3.3 (M24) - Characterization and calibration of dosimeters based on alanine pellets

A4.1.1 (M21) – Design and manufacture of the phantom for 3D dose measurements using alanine pellets

A4.1.2 (M30) – Measurements of D_w distributions in 3D using alanine dosimeters for INTRABEAM and Papillon50 eBT devices

A3.2.3-3.2.4 (M12) – Characterization and calibration of dosimeters based on Fricke gels

- A4.1.3 (M12) – Design and manufacture of the phantom for 3D dose measurements using Fricke gels

→ A4.1.4 (M15) – Monte Carlo calculations to convert absorbed dose to gel in absorbed dose to water D_w

A4.1.5 (M18) – Development of an automatic program for the analysis of MRI readings

→ A4.1.6 (M21) Measurements of D_w distributions in 3D using Fricke gel dosimeters for INTRABEAM device

Uist
Comparison WITH MANUFACTURER-SUPPLIED DOSE MAPS

Task 4.1 – Measurement of the 3D dose distributions close to the considered eBT devices with or without applicators fitted

A3.1.1 (M9) – Characterization and calibration of dosimeters based on scintillators and ion-chambers

A4.1.7 (M18) – Design and development of a method to measure 3D dose distributions using commercially available motorized water phantoms for scintillator detectors and ion-chambers

A4.1.8 (M20) – Characterization of the positional accuracy of the detectors inside the motorized water phantom

A4.1.9 (M24) - Measurements of D_w distributions in 3D using scintillator and ion-chamber based dosimeters for INTRABEAM & Papillon50 eBT devices

Uist
COMPARISON WITH MANUFACTURER-SUPPLIED DOSE MAPS

Task 4.2 – Traceable dosimetry for 3D dose distribution measurements including a comparison of different absorbed dose to water (D_W) maps

• A4.1.2 (M30) – Measurements of D_w distributions in 3D using alanine dosimeters for INTRABEAM and Papillon50 eBT devices

A4.1.9 (M24) – Measurements of D_w distributions in 3D using scintillator and ion-chamber based dosimeters for INTRABEAM & Papillon50 eBT devices

A4.2.1 (M32) – comparison of the dose map supplied by the manufacturer for the Papillon50 eBT device with the D_w
3D distributions measured using alanine detectors and a combination of scintillator and ion-chamber detectors

A4.2.2 (M33) – Comparison of the dose map supplied by the manufacturer for the INTRABEAM system with the D_w 3D distributions measured using a combination of scintillator and ion-chamber detectors (A4.1.7) and alanine detectors (A4.1.2)

Uist
Comparison WITH MANUFACTURER-SUPPLIED DOSE MAPS

Task 4.2 – Traceable dosimetry for 3D dose distribution measurements including a comparison of different absorbed dose to water (D_W) maps

A4.1.2 (M30) – Measurements of D_w distributions in 3D using alanine dosimeters for INTRABEAM and Papillon50 eBT devices

- A4.1.6 (M21) – Measurements of D_w distributions in 3D using Fricke gel dosimeters for INTRABEAM device

A4.1.9 (M24) – Measurements of D_w distributions in 3D using scintillator and ion-chamber based dosimeters for INTRABEAM & Papillon50 eBT devices

A4.2.3 (M33) – Comparison of the dose map supplied by the manufacturer for the INTRABEAM system with the *D*_w 3D distributions measured using Fricke gel, alanine detectors and a combination of scintillator and ion-chamber detectors

A4.2.1-4.2.3 (M33) Comparison of the dose maps supplied by the manufacturer with the D_w 3D distributions measured using different dosimeters

A4.2.4 (M34) – Report with the collection of the results

WP4 Progress (NPL)

A4.1.1 (M27; Sep 21) (delayed to M33, March 2022)

- Design ideas for phantoms for alanine pellets discussed with WP4 partners on 24 June 2021
- Three CIRS Plastic Water® LR test pieces made at NPL workshop to gain experience with the machining properties of this phantom material
- Detailed design drawings of all plastic phantoms need to be finalised and discussed with AU and PTB

A4.1.2 (M36; Jun 22):

- The 3D absorbed dose measurements using NPL's alanine dosimeters will be performed at Aarhus University Hospital (setup: Papillon 50 with 25 mm applicator) and at PTB (setup: Intrabeam with and without 40 mm spherical applicator)
- In case of travel restrictions due to Covid-19, it should be possible to pre-load the phantoms with alanine pellets, mail them to AU and PTB, and mail them back to NPL for processing
- Dates of measurements to be confirmed after completion of phantoms for alanine pellets
- Measurements at PTB provisionally booked from 27 June 1 July 2022

A4.2.1 (M38; Aug 22) and A4.2.2 (M39; Sep 22):

no progress

- Vaseline (petroleum jelly) might not be suitable to provide a watertight seal
- Hylomar Universal Blue (non-setting gasket sealer, polyester urethane based) to be used instead

list ^{Ceatech}

WP 4 – ALANINE DOSIMETRY (NPL)

list Ceatech

WP 4 – ALANINE DOSIMETRY (NPL)

3

WP4 Progress (CEA)

A4.1.3: Phantom for measurement using Fricke gels of 3D distributions of D_W has been manufactured et tested.

list

Ceatech

A4.1.4: A numerical model (PENELOPE 2018) of the INTRABEAM system with 4 cm spherical applicator has been developed.

Conversion coefficients $D_{gel} \rightarrow D_W$ to be calculated. Need to agree on the effective source focal point as discussed during the WP4 meeting in June.

A4.1.5: Automatic program for the analysis of the MRI readings

- Python based software has been developed to process the data obtained by imaging irradiated Fricke gel dosimeters with an MRI readout. The MRI sequence used was a T₂-weighted one called 2D Fast-Spin-Echo.

- The intensity values of the pixels in the DICOM images (coming from the MRI readout) are converted into $R_2=1/T_2$ values.

- 3D dose distributions are obtained through a preliminary calibration $D = f(R_2)$

4.0e-1

- 3.0e-1

2.0e-1

1.0e-1

3.0e+0

2.0e+0

1.0e+0

0.0e+0

9 -1.0e+0

-2.0e+0

-30e+0

-4.0e+0

-5.0e+0

list WP4 Progress (AU) Ceatech

Start with A4.1.7: AU will design and develop a method to measure the 3D Dw dose using a commercial motorised stage system water phantom for scintillation detectors and suitable ionisation chambers.

Effectively performing A4.1.7 and A4.1.9 concurrently (result follows on later slides).

Fig. 1: Sketch and picture of the setup-for 3D dose distribution measurements

WP4 Progress (AU)

A4.1.8: AU will characterise the positional accuracy of the motorised water phantom used to measure the 3D D_w dose.

- Video tracking of motorised stage and dosimeter.
- Compare positions recorded by phantom with those recorded with video.
- SD of ±0.1 mm along each axis.

Fig. 3: Deviation of filmed position from position recorded by phantom for the individual tracked points on fig. 2.

Fig. 4: Combined deviation of filmed position from position recorded by phantom for each axis on fig. 2.

WP4 Progress (AU)

Start with A4.1.9: AU, in collaboration with PTB, will measure the 3D D_W dose distribution for the Papillon and INTRABEAM systems using commercially available and laboratory developed scintillation detector systems.

Dosimetry for electronic brachytherapy

Peter Georg^{14*}, Gustavo Kertzscher⁸¹, Lars Nyvang³⁰, Jaroslav <u>Solc²¹</u>, Thorsten <u>Schneider⁴⁰</u>, Kari <u>Tanderup^{4,31}</u>, Jacob <u>Graversen Johansen^{4,31}</u>

WP4 progress at PTB

A4.1.9, A4.2.1, A4.2.2, Measurement of 3D dose distributions (cont.)

Using the commercial detectors characterized in WP3

POINTS OF MEASUREMENTS

The measuring points:

For dose with distance For radial distribution at 10 mm and 50 mm For polar distribution at 10 mm and 50 mm

In-house software control the robot, record the collected charge and measure pressure and temperature

Measurements vs Zeiss provided user data. INTRABEAM bare needle

Distance in water, mm

Measurements vs Zeiss provided user data. INTRABEAM 40 mm spherical app.

RADIAL AND POLAR DISTRIBUTIONS OF INTRABEAM <u>BARE NEEDLE</u>

Radial distribution

Polar distribution

Measurement results with the INTRABEAM <u>40 mm App</u>

Radial distribution

Polar distribution at planes YZ and XZ

